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Abstract
Hi-Desert Water District (HDWD), the primary water-management agency in the Warren Groundwater Basin,

California, plans to construct a waste water treatment plant to reduce future septic-tank effluent from reaching
the groundwater system. The treated waste water will be reclaimed by recharging the groundwater basin via
recharge ponds as part of a larger conjunctive-use strategy. HDWD wishes to identify the least-cost conjunctive-
use strategies for managing imported surface water, reclaimed water, and local groundwater. As formulated,
the mixed-integer nonlinear programming (MINLP) groundwater-management problem seeks to minimize water-
delivery costs subject to constraints including potential locations of the new pumping wells, California State
regulations, groundwater-level constraints, water-supply demand, available imported water, and pump/recharge
capacities. In this study, a hybrid-optimization algorithm, which couples a genetic algorithm and successive-linear
programming, is developed to solve the MINLP problem. The algorithm was tested by comparing results to
the enumerative solution for a simplified version of the HDWD groundwater-management problem. The results
indicate that the hybrid-optimization algorithm can identify the global optimum. The hybrid-optimization algorithm
is then applied to solve a complex groundwater-management problem. Sensitivity analyses were also performed
to assess the impact of varying the new recharge pond orientation, varying the mixing ratio of reclaimed water
and pumped water, and varying the amount of imported water available. The developed conjunctive management
model can provide HDWD water managers with information that will improve their ability to manage their surface
water, reclaimed water, and groundwater resources.
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Introduction
Hi-Desert Water District (HDWD), the primary

water-management agency in the Warren groundwater
subbasin, California (Figure 1), plans to construct a waste
water treatment plant to reduce future septic-tank effluent
from reaching the groundwater system. The treated waste
water will be reclaimed by recharging the groundwater
basin via recharge ponds as part of a larger conjunctive-
use strategy. HDWD wishes to identify the least-cost
conjunctive-use strategies that control groundwater lev-
els, meet California State regulations, meet water-supply
demand, and identify the optimal locations of new pump-
ing wells. The aquifer is modeled as unconfined and the
decision variables are the locations of the new pump-
ing wells and the optimal pumping/recharge operating
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schedules; therefore, the management problem is formu-
lated as a mixed-integer nonlinear programming (MINLP)
problem. Nonlinearities arise from the nonlinear nature of
an unconfined aquifer and the integer-programming prob-
lem arises from the identification of optimal new pumping
well locations.

Optimization-management models have been devel-
oped to manage groundwater resource systems for more
than two decades. The design of optimal-groundwater
management systems may involve determining the val-
ues of continuous decision variables, such as extraction
and injection rates from wells, and the values of discrete
decision variables, such as well locations. The objective
function is usually formulated to minimize the operation
cost within the management-planning horizon. The man-
agement model is subject to state and decision-variable
constraints, for example, desired groundwater levels,
meeting water-supply demands, and maximum pumping
capacities.

Groundwater-management models are a class of
modeling techniques in which simulation models
of groundwater systems are incorporated into an optimiza-
tion formulation, and have been shown to be powerful
and useful methods to solve design and operation prob-
lems associated with groundwater hydraulic control, water
supply, and remediation. There exists a large body of liter-
ature related to the application of traditional optimization
methods to solve groundwater-management problems.
Linear programming (LP; Molz and Bell 1977; Lefkoff
and Gorelick 1986), nonlinear programming (NLP;
Ahlfeld et al. 1988; Wang and Ahlfeld 1994; McKinney
and Lin 1995), and dynamic programming (Chang et al.
1992; Culver and Shoemaker 1992, 1997; Willis 1979)
have been combined with the groundwater-flow model (or
coupled groundwater/mass-transport models) to identify
optimal-operation policies. Gorelick (1983), Yeh (1992),
Wagner (1995), Ahlfeld and Mulligan (2000), and Mayer
et al. (2002) have presented extensive review papers on
optimization-management models. Among these methods,
the successive linear programming (SLP) algorithm has
been shown to be a useful tool for solving nonlinear
groundwater-management problems, and the optimal solu-
tion converged rapidly. Nishikawa (1998) and Ahlfeld
and Baro-Montes (2008) used the SLP algorithm to
solve groundwater-flow management problems; the prob-
lem solved by Nishikawa (1998) had nonlinear boundary
conditions and the problem solved by Ahlfeld and
Baro-Montes (2008) was an unconfined groundwater-flow
problem.

When well locations are considered in the nonlin-
ear groundwater-management problem, the result is a
MINLP problem because of the discrete nature of the deci-
sion variable. Several methods are available for solving
the general MINLP. These include the branch-and-bound
method (Fletcher 1987), outer approximation/equality
relaxation method (Duran and Grossman 1986; Kocis
and Grossman 1987), generalized Benders’ decomposi-
tion (Watkins and McKinney 1998), and approximate
MINLP method (McKinney and Lin 1995). All of these

methods rely on gradient-based techniques. However,
groundwater-management problems are often charac-
terized as nonconvex, nonlinear-programming problems
(Willis and Yeh 1987), relying only on conventional
gradient-based search methods to solve the MINLP prob-
lems is usually infeasible. These methods cannot address
the discontinuity caused by the integer decision variables,
and the optimal solution easily can be trapped in a local
optimum because of the nonlinearity and there is no
guarantee that a global optimum will be found. Hence,
global-search techniques (non-gradient-based optimiza-
tion algorithms), such as the genetic algorithm, simulated
annealing, and tabu search have been extensively applied
to the problems of groundwater management (Dougherty
and Marryott 1991; McKinney and Lin 1994; Huang and
Mayer 1997; Aly and Peralta 1999; Zheng and Wang
1999; Mantoglou et al. 2004; Park and Aral 2004; Hsiao
and Chang 2005). Although global optimization schemes
can identify the global optimum, the convergence is
very slow when the number of decision variables is
large.

In this paper, a hybrid-optimization algorithm that
couples a genetic algorithm (GA) with a SLP algorithm
is developed to solve the MINLP problem. The MINLP
problem is decomposed into two parts, integer (or binary)
and real parts. The integer part is solved using the
GA. Using the optimal integer decision variables from
the GA, the MINLP problem is simplified to the NLP
problem, which is solved using a SLP algorithm. We
demonstrate that the hybrid-optimization algorithm has the
capability to solve a MINLP problem for a conjunctive-
use management and well-field design problem by using
the algorithm to determine the least-cost conjunctive-
use strategies for HDWD, referred to as the case study.
The results of the case study are then evaluated with
a sensitivity analysis. The sensitivity analysis evaluates
three alternatives: (1) new pond orientation, (2) required
percentage of reclaimed water, and (3) availability of
imported water.

Case Study: Description of Study Area
and Proposed Conjunctive-Use Project

Description of Study Area
HDWD has proposed a conjunctive-use project in

the Warren subbasin, California. The Warren subbasin
is located about 160 km east of Los Angeles in the
southwestern part of the Mojave Desert in southern
California and is part of the Morongo Groundwater Basin
(Figure 1). The areal extent of the Warren subbasin is
48.64 km2, bounded by the San Bernardino Mountains
on the northwest, the Little San Bernardino Mountains on
the southwest, both a natural topographic and a ground-
water divide on the west, and a series of faults that are
referred to as the Yucca barrier on the east (Figure 1).
The areal extent of the water-bearing deposits, which is
much smaller than that of the subbasin (14.08 km2 vs.
48.64 km2), is referred to as the Warren Groundwater
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Figure 1. Location of the Warren subbasin, California and model grid for the groundwater flow and transport model.

Basin and is the study area for this paper. Faults separate
the groundwater basin into five hydrogeologic units: the
west, Midwest, Mideast, east, and northeast hydrogeologic
units (Figure 1). The water-bearing deposits in the War-
ren Groundwater Basin were divided into four aquifers
(referred to as the upper, middle, lower, and deep
aquifers). The detailed description of geology, hydroge-
ology, and groundwater development for the study area
can be found in Nishikawa et al. (2003).

Nishikawa et al. (2003) developed a 3D groundwater-
flow model for the Warren Groundwater Basin based on
MODFLOW-2000 (Harbaugh et al. 2000). The spatial
discretization of the model consists of three horizontal
layers, each divided into a 25 by 75 grid (Figure 1).

The grid spacing is about 152.40 m (500 ft) by 152.40 m
in the x and y direction, and the model grids cover
the entire Warren Groundwater Basin. Three horizontal
layers—model layer 1, modeled as an unconfined aquifer,
represents the upper and middle aquifers; model layer
2, modeled as a convertible aquifer, represents the
lower aquifer; and model layer 3, modeled as a confined
aquifer, represents the deep aquifer. All model boundaries
are simulated as no-flow boundaries, except the eastern
boundary, which is a general-head boundary, and the
top boundary (recharge boundary), which is a specified-
flux boundary. The faults in the groundwater basin
are modeled using the Horizontal-Flow-Barrier package
(Hsieh and Freckleton 1993), which simulates faults as
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thin, vertical, low-permeability geological features that
impede horizontal groundwater flow. Evapotranspiration
is not simulated because the water table is as deep as
90 m below land surface (bls). The groundwater-flow
model was calibrated using measured data from 1956
to 2006 and the year 2006 recharge pattern (natural
recharge, septic-tank effluent, and irrigation return flow)
used in the model calibration process is repeated for the
management models. The simulated groundwater levels
at the end of the calibration process were used as the
initial conditions for the management model. For specifics
regarding the groundwater-flow model see Nishikawa
et al. (2003).

Description of Proposed Conjunctive-Use Project
The proposed conjunctive-use project includes a new

recharge pond, three existing recharge ponds (Sites 3, 6,
and 7), new pumping wells, and 13 existing pumping
wells (5E, 9E, 12E, 14E, 16E, 17E, 18E, 2W, 6W, 8W,
9W, 10W, and 11W). The location of the new recharge
pond is predetermined by HDWD and located in the east
hydrogeologic unit (Figure 1). California State regulations
require initially a mixing ratio of 20% reclaimed water
to 80% mixing water of nonwaste water origin. In this
study, the reclaimed water is the treated waste water
from waste water treatment plant and the origin of the
nonwaste water is the water pumped from new wells
installed according to California State regulations. For
the purpose of this study, it is assumed that the mixing
water is groundwater pumped from new pumping wells in
the east hydrogeologic unit and used as the only source
for mixing water. The existing pumping wells are used
to satisfy water demand and control groundwater levels.
The existing recharge ponds are recharged with imported
water only (i.e., no mixing with treated waste water) and
are used to recharge the groundwater system. We assume
that the new recharge pond and new pumping wells must
follow California State regulations, which include: (1) the
minimum distance between ponds and wells equals to
152.40 m (500 ft), (2) the minimum travel time (retention
time) between ponds and wells equals 6 months, and
(3) the mixing ratio of reclaimed water and pumped
groundwater should be greater than or equal to 20%. In
this proposed project, HDWD wishes to identify the least-
cost conjunctive-use strategies that control groundwater
levels, meet regulations, meet water-supply demand, and
identify the optimal locations of new pumping wells;
therefore, the management problem is formulated as a
MINLP problem.

Formulation of the Conjunctive-Use Management
Problem

The groundwater-management model was formulated
as a MINLP problem with the objective of minimizing
water-delivery costs subject to constraints on potential
new well locations, migration of recharged water, reten-
tion time of recharged water, mixing ratio of reclaimed
and pumped waters, groundwater levels, water-supply
demands, available imported water, and pump/recharge

capacities. The formulation can be summarized as:

min J =
[

NW∑
w=1

aw · CIw +
T∑

t=1

NW∑
w=1

bw,t ·(Cw,t ·Qw,t )

+
T∑

t=1

NP∑
p=1

Cp,t ·Qp,t +
T∑

t=1

NJ∑
j=1

Cj,t ·Qj,t

⎤
⎦ (1)

subject to

d(w,L) ≥ dr (2)

d(w,L) ≥ Kw,L · grad(hw,L)·tr (3)

R∑NW

w=1 Qw,t + R
≤ r, t = 1, . . . , T (4)

aw ≥ bw,t , aw ∈ {0, 1}, bw,t ∈ {0, 1},
w = 1, . . . , NW , t = 1, . . . , T

(5)

hmin
i,tc

≤ hi,tc ≤ hmax
i,tc

, i ⊂ I, tc ⊂ Tc (6)

NP∑
p=1

Qp,t ≥ Dt, t = 1, . . . , T (7)

NJ∑
j=1

Qj,t ≤ At, t = 1, . . . , T (8)

0 ≤ Qw,t ≤ Qmax
w ,w = 1, . . . , NW ,

t = 1, . . . , T (9)

0 ≤ Qp,t ≤ Qmax
p , p = 1, . . . , NP ,

t = 1, . . . , T (10)

0 ≤ Qj,t ≤ Qmax
j , j = 1, . . . , NJ ,

t = 1, . . . , T (11)

where J is the objective function; Qw,t and Qp,t are the
pumping rates (L3/t) during the t th stress period (1 month)
at a new pumping well w and an existing pumping well p;
and Cw,t and Cp,t are the corresponding cost coefficients;
Qj,t is the recharge rate (L3/t) during the t th stress period
for a recharge pond j with corresponding cost coefficient,
Cj,t ; NW , NP , and NJ are the number of new pump-
ing wells, existing pumping wells, and recharge ponds,
respectively; T is the operation horizon; CIw is the instal-
lation cost, which includes well and pipeline (from the
new pumping well to the new recharge pond) construction
costs, for new pumping well w; aw is the binary variable
used to represent the installation of the new pumping well
w, aw = 1 if the well is installed, otherwise aw = 0; bw,t

is the binary variable used to represent the operation dur-
ing the t th stress period for the new pumping well w,
bw,t = 1 if the new well w is pumping during the t th
stress period, otherwise bw,t = 0; and Qw,t , Qp,t , Qj,t ,
aw, and bw are decision variables. The total cost includes
the installation of new pumping, which includes well and
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pipeline construction costs, new and existing pumping-
well operations, and recharge pond operations.

Equations 2 to 4 are set according to California
State regulations. Equation 2 ensures that the location
of a new pumping well satisfies the State distance
regulation (i.e., no closer than 152.4 m from the recharge
pond). The variable d(w,L) is the distance of new
pumping wells (w) from the new recharge pond (L)

and dr is the minimum distance defined by the State
regulation. Equation 3 ensures that the retention time
of the reclaimed water satisfies State regulations. Kw,L

is the hydraulic conductivity between the new pumping
well and the new recharge pond, grad(hw,L) is the
hydraulic gradient between the new pumping well (w)

and the recharge pond (L), and tr is the minimum travel
time defined by the State regulation. Equation 3 is an
approximation to the regulation under the assumptions of
linearity and steady state. Equation 4 ensures that the
State regulation defining the ratio of reclaimed water
to pumped groundwater is satisfied. R is the production
rate of the reclaimed water and r is the specified ratio of
mixing reclaimed and pumped waters. Although the new
pumping wells are not used to satisfy the water demand,
we assume they are production wells and, therefore,
subject to the State regulations.

Equation 5 ensures that a new pumping well will be
installed before it can be operated. Equation 6 restricts the
maximum/minimum groundwater level at the end of
the tc th stress period at location i; hmax

i,tc
is the maximum

allowable groundwater level at the end of the tc th stress
period at location i; hmin

i,tc
is the minimum required

groundwater level at the end of the tc th stress period at
location i; hi,tc is the simulated groundwater level
at the end of the tc th stress period, at location i; I is
the set of groundwater-level constraint locations and Tc

is the set of constrained stress periods. The maximum
required groundwater levels are used to prevent the rising
rates of groundwater levels. According to Nishikawa et al.
(2003), the rapidly rising groundwater levels resulting
from the artificial-recharge program at Sites 6 and 7
entrained septic-tank effluent stored in the unsaturated
zone and caused the high-nitrate concentrations in the
groundwater. The minimum required groundwater levels
are used to prevent over-pumping.

Equation 7 ensures that the water-supply demand is
met, and Dt is the water-supply demand during the t th
stress period. Equation 8 sets an upper limit on the total
amount of the recharge water, and At is the total available
imported water for recharge during the t th stress period.
Equations 9 to 11 limit the new pumping at well w, the
existing pumping at well p, and recharge at pond j to
be less than or equal to the new pumping capacity of the
well, Qmax

w , the pumping capacity of the well, Qmax
p , and

recharge capacity of the pond, Qmax
j .

Equations 3 and 6 indicate the dependence of ground-
water levels on the pumping rates and are determined
using the simulation model. When the aquifer is modeled
as unconfined, these two constraints are the sources of
nonlinearity.

Conjunctive-Use Management Model
The locations of existing pumping wells, existing

recharge ponds, proposed new recharge pond, and poten-
tial locations of new pumping wells are shown in Figure 1.
Existing recharge sites are located in the west, Mid-
west, and Mideast hydrogeologic units: Sites 3, 6, and
7, respectively (Figure 1). The cost coefficients, CIw,
Cw,t , Cp,t , and Cj,t , and capacities of wells and ponds,
Qmax

w , Qmax
p , and Qmax

j were supplied by HDWD and its
consultant, Montgomery-Watson-Harza (MWH) (Jeffrey
Mohr, MWH, personal communication, 2008; Table 1).
The installation cost, CIw, lumps the well and pipeline
construction costs together, and are equal to $1.00 ×
106/well (Jeffrey Mohr, MWH, personal communication,
2008) and $328.08/m (=$100.0/ft) (Gail K. Masutani,
PBS&J, personal communication, 2010), respectively.
HDWD is allocated 5.28 × 106 m3/year (4.28 × 103 acre-
ft/year, AFY) of imported water from the California State
Water Project (SWP) to artificially recharge at Sites 3,
6, and 7 (Joseph Glowitz, HDWD, personal communi-
cation, 2009). We assume the annual imported water is
evenly distributed over each of the 12 months, so At

is equal to 4.40 × 105 m3/month (1.45 × 104 m3/d). The
monthly water-supply demand, Dt , is estimated based on
the historical water-supply data provided by HDWD, and
is projected to increase 2% per year over a 5-year planning
horizon (Joseph Glowitz, HDWD, personal communica-
tion, 2009).

Table 1
The Installation Costs of the New Pumping Well
and the Unit Costs of the New Pumping Wells,

Existing Pumping Wells, and Recharge Ponds in
the Groundwater-Management Model

Well Name
Installation Cost

($/well)

Each new pumping well 1,000,000

Well/Pond Name
Capacity

(m3/d) Unit Cost ($/m3)

Each new pumping well 5678.49 0.05
Water-supply well 5E 855.62 0.08
Water-supply well 9E 1945.58 0.03
Water-supply well 12E 7994.85 0.08
Water-supply well 14E 3585.96 0.03
Water-supply well 16E 1193.50 0.04
Water-supply well 17E 2070.92 0.04
Water-supply well 18E 1465.99 0.08
Water-supply well 2W 523.18 0.11
Water-supply well 6W 2332.51 0.07
Water-supply well 8W 1297.05 0.12
Water-supply well 9W 4561.48 0.06
Water-supply well 10W 1367.90 0.07
Water-supply well 11W 5542.44 0.06
Recharge pond Site 3 6167.41 0.25
Recharge pond Site 6 6167.41 0.25
Recharge pond Site 7 6167.41 0.25
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Groundwater-level constraints were specified at well
YVUZ-2: well 9E and well 18E; and locations H1,
H2, and H3 represent the west, Midwest, Mideast,
and east hydrogeologic units, respectively (Figure 1).
The groundwater-level constraints are set at the end of
each year (every 12 stress periods), and the maximum
allowable groundwater levels, hmax

i , are set 45.72 m
(150 ft) bls for all constraint locations, except wells 9E
and 18E (the corresponding groundwater-level constraints
are shown in Figure 9A). At the beginning of the
simulation, groundwater levels for wells 9E and 18E
are less than 45.72 m bls. To maintain feasibility, the
maximum allowable groundwater level for well 9E is
set at 33.53 m (110 ft) bls at the end of the first
year and at 38.10 m (125 ft), 42.67 m (140 ft), 44.20 m
(145 ft), and 45.72 m bls at the end of the second, third,
fourth, and fifth years, respectively (the corresponding
groundwater-level constraints are shown in Figure 9B).
The maximum allowable groundwater level for well 18E
is set at 14.21 m (46 ft) bls at the end of the first
year and at 23.16 m (76 ft), 31.70 m (104 ft), 39.32 m
(129 ft), and 45.72 m bls at the end of the second, third,
fourth, and fifth years, respectively (the corresponding
groundwater-level constraints are shown in Figure 9C).
The minimum required groundwater levels, hmin

i , are
set 45.72 m below hmax

i for all constraint locations (the
corresponding groundwater-level constraints are shown
in Figure 9A–9C), except well YVUZ-2. The minimum
groundwater levels for well YVUZ-2 are required to
increase at a rate of 4.57 m/year (15 ft/year) because the
initial groundwater level is lower than the predevelopment
condition in 1958 (the corresponding groundwater-level
constraints are shown in Figure 9D). The increasing
rate of 4.57 m/year is needed to maintain feasibility of
the management model. If the rate is too large, the
optimization problem is infeasible because a combination
of the maximum allowable recharge for Site 3 and
no pumping for the production wells in the west
hydrogeologic unit will not satisfy this constraint.

The production rate of the reclaimed water is equal
to 3.79 × 103 m3/d (1 million gallons per d, MGD);
therefore, the total pumping from the new wells should be
greater than or equal to 1.51 × 104 m3/d (4 MGD) to meet
the State regulations. HDWD specified that new pumping
wells could only be located in the east hydrogeologic
unit, referred to as the potential area on Figure 1. The
new pumping wells are not allowed within 152.40 m
of the new recharge pond (within the rectangular area
around the new recharge pond shown in Figure 1) per
State regulation; therefore, there are 203 potential new
well locations (Figure 1).

Development of a Hybrid-Optimization
Algorithm for a MINLP Problem

Genetic Algorithm
A GA is a search technique based on the mechanics

of natural selection and natural genetics, and is used to

find exact or approximate solutions to optimization and
search problems. GAs use a random-search procedure
inspired by biological evolution, cross-breeding trial
designs and allowing only the fittest designs to survive
and propagate to successive generations. The algorithm
uses chromosomes to encode the decision variables and
starts from a group or a population of chromosomes, in
which each decision variable value is initially randomly
assigned. In this study, a chromosome represents a set
of binary decision variables, which is a set of potential
locations for installing the new pumping wells. If the
bit in a chromosome equals 1, that location is selected
to install a new pumping well. If the bit equals 0, that
location is not selected. The length of the chromosome
equals to the number of binary decision variables. The
population is the set of chromosomes currently involved in
the search process, and the population size is the number
of chromosomes in population.

At each generation, GAs decode the chromosomes in
the population and then evaluates their performance using
a fitness function representing the objective function.
Three operators—selection, crossover, and mutation—
are implemented to improve the fitness function gen-
eration by generation (Goldberg 1989). Selection is an
operator to select chromosomes from the population to be
parents to crossover and mutate. In this study, the tourna-
ment selection is used to select the chromosomes as the
parents to generate new chromosomes, called offspring.
The tournament selection provides selective pressure by
holding a tournament competition among k individuals.
The best individual from the tournament is the one with
the highest fitness and is then inserted into the mating
pool for crossover and mutation to generate the offspring.
Elitism, the first best chromosome (or the few best chro-
mosomes) is directly copied into the new population as
the offspring, is the other selection method used in this
study. Crossover is an operator to select chromosomes
from parent chromosomes and create a new offspring. The
crossover probability (pc) indicates the expected number
of chromosomes (pc × population size) that undergo the
crossover operation. Mutation is an operator to involve a
probability that an arbitrary bit in a chromosome will be
changed from its original state, that is, change from 0 to
1 or vice verse. The mutation probability (pm) indicates
that the expected number of mutated bits (pm × number
of bits in a chromosome × population size). Every bit (in
all chromosomes in the entire population) has an equal
chance to undergo mutation. Niching, a method to permit
a formation of stable subpopulations of different chromo-
somes based on sharing, is also used in this study. The
detailed review of niche method and GA can be found in
Goldberg (1989), Michalewicz (1994), and Sivanandam
and Deepa (2008). A large number of GA examples can
also be found in these references.

The computational time required to solve an opti-
mization problem using a GA increases with the
complexity of the problem. In particular, as the number of
decision variables increases, so does the required popula-
tion size. Large population sizes imply large number of
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fitness function evaluations. To reduce the computational
burden, parallel computing, which decodes and evaluates
the fitness of each chromosome on separate processors, is
applied in the hybrid-optimization algorithm. In this study,
the GA has a population size of 50, the tournament size
(k) is 2, the crossover probability is 0.5, and the mutation
probability was 0.001. The GA is computed in consecu-
tive generations until the termination criterion, which is
heuristic, is met. After testing the GA for our case, the
algorithm is ended when the fitness of the optimal chro-
mosome remains constant over 10 generations and the
number of generations exceeds a given maximum, 100.

Successive Linear Programming
The SLP algorithm is applied to solve the NLP

problem. The SLP is based on repeated linearization of
the nonlinear features in the groundwater-management
models, and is implemented by recalculating the response
matrix for each successive linear program (Louie et al.
1984; Becker and Yeh 1972; Yeh 1992; Ahlfeld and
Mulligan 2000). The response matrix consists of the
influence coefficients and is used to replace the simulation
model in the constraint set of a management model
(Becker and Yeh 1972). The influence coefficient is
defined as the change in state variable (groundwater
levels in this study) for a change in decision variable
(pumping/injection rates in this study), evaluated for the
set of decision variables, that is,

∂ui,j,k,t

∂Qwn

∣∣∣∣
Qw

(12)

where ui ,j ,k ,t is the groundwater level at location i, j ,
k and stress period t obtained when the set of decision
variables, Qw, is applied; and Qwn is the nth deci-
sion variable.

If the aquifer is modeled as unconfined, the
groundwater-level responses to the decision variable may
be nonlinear and the response matrix may no longer be
constant. Therefore, SLP recalculates the response matrix
at each iteration. This recalculation uses the value of
the decision variables obtained at previous iteration. The
response matrix is updated until two convergence crite-
ria are met: (1) convergence of the infinity norm of the
difference between the current and prior decision vari-
ables (Equation 13) and (2) convergence of values of the
objective function (Equation 14) (Ahlfeld et al. 2005).

‖Qv+1
w − Qv

w‖∞ ≤ ε1(1 + ‖Qv+1
w ‖∞) (13)

|J v+1 − J v| ≤ ε2(1 + |J v+1|) (14)

where ‖‖∞ is the infinity norm, which equals max
(|Qw1|, . . . , |Qwn|); Qv+1

w and Qv
w are the set of decision

variables at iteration v + 1 and v; ε1 is the specified
fraction of the decision variable; J v+1 and J v are the
objective value at iteration v + 1 and v, respectively; and
ε2 is the specified fraction of the objective value. ε1 and ε2

are equal to 10−4 and 10−3 in this study.

Figure 2. Flowchart for the hybrid-optimization algorithm.

Hybrid-Optimization Algorithm
Figure 2 shows the flowchart of the proposed hybrid-

optimization algorithm for solving MINLP problems.
The GA does not require calculating the derivatives of
state variables relative to decision variables; therefore,
addressing the discontinuity in the decision variables
is straightforward. First, the GA randomly generates
chromosomes where each chromosome represents a set of
new pumping-well locations. Given each chromosome, the
MINLP problem becomes a NLP problem that is solved by
the SLP algorithm to obtain the optimal pumping/recharge
rates. The optimal objective value obtained from the SLP
algorithm is the fitness function value used by the
GA. The GA produces subsequent generations applying
the three operators (selection, crossover, and mutation)
to the current generation. The SLP algorithm then solves
the optimization problem defined by the new generation
of chromosomes. The SLP results are then returned to
the GA to evaluate the fitness function; with the cycle
continuing until the convergence criteria are met. The
GA program developed by D. L. Carroll (FORTRAN
genetic algorithm driver, version 1.7a, 2001, available
at http://cuaerospace.com/carroll/ga.html) is modified to
serve our purpose and MF2K_GWM (Ahlfeld et al. 2005),
which applies the SLP algorithm to solve the NLP, also
is modified and embedded into the GA.

Testing the Hybrid-Optimization Algorithm
for the Simplified Case Study

To test the hybrid-optimization algorithm, the algo-
rithm was used to solve a simplified version of the case
study and the results were compared with the results
obtained using the enumeration-search method, branch-
and-bound method, and GA. The enumeration-search
method examines the entire solution domain and the
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Figure 3. Results of testing the hybrid-optimization algo-
rithm for the simplified case study.

identification of the global optimum is guaranteed
(Jajszczyk and Wojcik 2005; Jech 2006). The branch-
and-bound method is an optimization algorithm, which
uses splitting and bounding procedures to treat the MINLP
problem as several NLP subproblems (Rardin 1998). To
make the enumeration-search method tractable, the poten-
tial new well locations were restricted to a small area
(Figure 3), referred to as the simplified version of the
case study, and the number of potential well locations
was reduced from 203 to 18.

The optimal results are shown in Table 2. All the
methods, except GA, identified the same three new
pumping well locations and the minimum objective values
are also the same, $8.46 × 106. GA did not converge
to the global optimal solution after 72.0 h of CPU
time. These results indicate that the hybrid-optimization
algorithm can identify the global optimum solution for a
MINLP problem. Compared to the enumeration method,
the branch-and-bound method and hybrid-optimization
algorithm reduce the computation time by about 96 and
82%, respectively. These results imply that the branch-
and-bound method is the most efficient approach in terms
of the computation time to solve this simplified case
study. However, this conclusion is only valid for a small

number of binary decision variables. When the number of
binary decision variables is large, the branch-and-bound
method becomes less efficient and the global optimum is
not guaranteed. This will be discussed further in the next
section.

Utilizing the Hybrid-Optimization Algorithm
for the Case Study

The algorithm is now used to solve the groundwater-
management problem (Equations 1–11) with 203 potential
new well locations (Figure 1). Table 3 summarizes the
configuration for the case study; referred to as the base
case, and sensitivity analysis alternatives 1, 2, and 3,
which are discussed in Section “Sensitivity Analysis.”

The algorithm converged after 42 generations
(Figure 4). Three new pumping wells were required and
the algorithm identified the locations of the new pump-
ing wells: P1, P2, and P3 (Figure 5). All three new
pumping wells are active during the 5-year management

Table 3
Orientation of the New Recharge Ponds, Mixing

Ratio of Reclaimed Water and Pumped
Groundwater; and the Percentage of Imported
Water Supply Simulated in the Base Case and

Sensitivity Analysis Alternatives 1–3 of the
Groundwater-Management Model

Simulation

New
Recharge

Pond
Orientation

Mixing
Ratio
(%)

Percentage
of Imported

Water
Supply

Base Case North-south 20 100% supply
Alternative 1 East-west 20 100% supply
Alternative 2A North-south 0 100% supply
Alternative 2B North-south 50 100% supply
Alternative 3A North-south 20 50% for years 4

and 5
Alternative 3B North-south 20 0% for years 4

and 5

Table 2
Results of the Enumeration-Search Method, Branch-and-Bound Method, Genetic Algorithm, and

Hybrid-Optimization Algorithm for the Simplified Case Study

Optimization Algorithm Enumeration Branch-and-Bound Genetic Algorithm Hybrid

Objective value ($, ×106) 8.46 8.46 8.83 8.46
Well location P1 (7, 54) (7, 54) (7, 54) (7, 54)
Well location P2 (8, 54) (8, 54) (8, 53) (8, 54)
Well location P3 (13, 54) (13, 54) (13, 54) (13, 54)
CPU time (h)1 68.9 3.1 72.02 12.4

12.6 GHz AMD Opteron CPU and 2 GB RAM.
2Did not converge.
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Figure 4. Objective-function convergence for the base case.

Figure 5. Optimal new well locations for the base case.

Figure 6. Optimal pumping schedules for new pumping
wells for the base case.

horizon. Well P1 pumps at its maximum capacity from the
beginning to the 54th month, well P2 pumps at its max-
imum capacity for the entire management horizon, and
well P3 pumps at its maximum capacity from the sixth
month to the end of the management horizon (Figure 6).

The optimal pumping schedules for the existing
pumping wells are shown in Figure 7A, 7B. Wells 9E and
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Figure 7. Optimal pumping schedules for the existing pump-
ing wells for the base case; (A) wells 5E, 12E, 16E, 17E, and
18E; and (B) wells 2W, 6W, 8W, 9W, 10W, and 11W.

14E, located in the Midwest and Mideast hydrogeologic
units, respectively, pump at their maximum capacities
for the entire management horizon. These wells can be
interpreted as the base producers and they supply more
than 60% of the water demand (a total of 1.01 × 107 m3

from 1.64 × 107 m3). The reason these wells are pumping
at their maximum capacities is that the initial groundwater
levels at constraint locations 9E and 18E are much
higher than the maximum allowable groundwater level,
45.72 m bls. Consequently, these wells pump at their
maximum capacities to decrease the groundwater level
at these locations. The optimized pumping schedules for
the wells 5E, 12E, 16E, 17E, and 18E vary with the
water-supply demand, which is higher during the summer
season and lower during the winter season (Figure 7A).
These wells can be interpreted as the seasonal producers to
supply seasonally varied water demand. Well 14E operates
at its maximum capacity to decrease the groundwater
level at location 18E, instead of well 18E itself, is due
to 14E’s cheaper unit price of pumping (0.03 vs. 0.08
$/m3). The optimal solution tends to activate the pumping
wells, which cost less to operate in order to minimize the
objective function. Wells in the west hydrogeologic unit
are inactive with the exception of well 11W, which is used
to meet the increasing water-supply demand (Figure 7B).

The optimal recharge schedules for Sites 3, 6, and 7
are shown in Figure 8. The recharge rate of Sites 6 and 7 is
equal to 0 during the entire planning horizon. Site 3 is the
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Figure 8. Optimal recharge schedules at Sites 3, 6, and 7 for
the base case.

only recharge pond to operate and reaches its maximum
recharge capacity during some months. The reason why
Site 3 is active is because the groundwater level at
well YVUZ-2 is constrained to increase 4.57 m/year
(15 ft/year). The simulated hydrographs at wells YVUZ-2,
9E, 18E, and H3 are shown in Figure 9A–9D. In these
figures, we see that all groundwater-level constraints are
satisfied, and some of them are binding or near-binding,
such as the lower bounds for well YVUZ-2 (Figure 9A),

the upper bounds for well 18E (Figure 9C), and the last
upper bound for location H3 (Figure 9D). The optimized
pumping and recharge strategy can effectively control the
groundwater levels while minimizing the operational cost.

The minimum total objective value is equal to
$7.26 × 106. The installation cost for new wells, the
pumping cost for new and existing wells, and the recharge
cost for imported water are listed in Table 4. From
Table 4, we see that the installation cost for the three
new wells is equal to $3.80 × 106, which accounts
for more than half of the total cost. If we subtract
the installation cost from the total cost, we find that the
pumping cost for new wells, the pumping cost for existing
wells, and the artificial-recharge costs are 46.9, 19.3,
and 33.8%, respectively. The pumping cost for existing
wells ($6.68 × 105), is relatively inexpensive because the
average unit cost of pumping is less expensive compared
to the unit costs of imported water and new pumping wells
(Table 1).

To compare the efficiency of the branch-and-bound
method, GA, and the hybrid-optimization algorithm
for the case with a large number of binary decision
variables, the three methods were applied to solve the base
case, which has 203 binary decision variables. The results
are shown in Table 5. The hybrid-optimization algorithm
required 52.5 h of CPU time to identify the optimal
solution; however, both branch-and-bound method and
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Figure 9. Simulated hydrographs at (A) well YVUZ-2, (B) well 9E, (C) well 18E, and (D) location H3 for the base case.
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Table 4
Results of the Base Case and Sensitivity Analysis Alternatives 1–3 of the Simulated

Groundwater-Management Model

Sensitivity Analysis Alternatives

Simulation Base Case 1 2A 2B 3A 3B

New well construction cost (×106, $) 3.00 3.00 0.00 1.00 3.00 3.00
New well pipeline cost (×106, $) 0.80 1.15 0.00 0.100 0.85 0.90
New well pumping cost (×106, $) 1.62 1.64 0.00 0.55 1.62 1.62
Water supply well pumping cost (×105, $) 6.68 6.70 6.68 6.68 6.68 6.69
Imported water cost (×106, $) 1.17 1.20 1.143 1.15 1.41 1.67
Total objective value (×106, $) 7.26 7.66 1.811 3.47 7.55 7.86
Well location P1 (11, 57) (10, 53) (9, 66) (11, 57) (11, 57)
Well location P2 (8, 62) (10, 58) (8, 62) (8, 62)
Well location P3 (10, 67) (10, 69) (10, 68) (11, 68)

Table 5
The Comparison of the Branch-and-Bound

Method, Genetic Algorithm, and
Hybrid-Optimization Algorithm for the Base Case

Study

Branch-
and-Bound

Genetic
Algorithm Hybrid

Objective value ($, ×106) 7.70 8.04 7.26
Well location P1 (9, 52) (11, 53) (11, 57)
Well location P2 (7, 60) (7, 68) (8, 62)
Well location P3 (11, 68) (11, 67) (10, 67)
CPU time (h)1 72.02 72.02 52.5

12.6 GHz AMD Opteron CPU and 2 GB RAM.
2Did not converge.

GA could not converge to the optimal solution after
72.0 h of CPU time. Based on this case, we can conclude
that when the number of binary decision variables is
large, the hybrid-optimization algorithm is more efficient
than the branch-and-bound method and the GA.

It should be noted that the potential issue of
nonuniqueness of the solution could exist in this
conjunctive-use management problems. Due to the set-
ting of the convergence criteria, in both GA and SLP, the
global optimum is not guaranteed and the unique global
optimum may not be identified. The iterative nature of the
GA and SLP results in identifying a local optimum. The-
oretically, the global optimum can be identified as long as
the hybrid-optimization algorithm can be run for a long
enough period. The nonuniqueness of the solution can be
addressed by running the hybrid-optimization algorithm
using many different initial guesses and comparing the
results. However, there are 2203 different initial guesses in
our particular case and it is infeasible to test all of them. It
should also be noted that nonuniqueness could also arise
from the parameter uncertainties introduced by the model
calibration. Parameter variability can produce different

management solutions and may have an impact on man-
agement policies (Loaiciga and Marino 1987). However,
a complete analysis of parameter uncertainty is beyond
the scope of this paper.

Sensitivity Analysis
A sensitivity analysis was performed to test the

sensitivity of the groundwater-management model to
changes in the orientation of the new recharge pond,
the mixing ratio of the reclaimed water and pumped
groundwater, and the quantity of imported water supply.
Specifically, the three alternatives were (1) changing the
orientation of the new recharge pond from north-south
to east-west; (2) changing the ratio of reclaimed water to
pumped groundwater from 20 to 0 and 50%; and (3)
reducing the quantity of available imported water supply
by 50 and 100% in years 4 and 5 (Table 3).

New Recharge Pond Orientation (Alternative 1)
In Alternative 1, the new recharge pond layout

is changed from a north-south orientation to an east-
west orientation, and the remainder of the constraint
sets is unchanged with the exception of the potential
locations of the new pumping wells. The prohibited area,
(e.g., 152.40 m between new pumping wells and the
new recharge pond) is changed to correspond to the new
recharge pond layout (Figure 10A).

The hybrid-optimization algorithm required 50 gen-
erations to converge. The optimal locations of new wells
P1, P2, and P3 are shown in Figure 10A. The optimized
pumping schedules for the new and existing pumping
wells and optimized recharge schedules are very similar
to the base case.

The minimum total objective value is equal to
$7.66 × 106 (Table 4). The pumping cost for new and
existing wells ($1.64 × 106 and $6.70 × 105, respec-
tively), and recharge cost ($1.20 × 106) are slightly higher
than the costs obtained from the base case (Table 4) indi-
cating that the north-south orientation may be preferable
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Figure 10. Optimal new well locations for the (A) Alternative 1, (B) Alternative 2B, (C) Alternative 3A, and (D) Alternative
3B.

to the east-west orientation. The results also indicate
that the new pumping well locations are sensitive to
the new recharge pond orientation; however, the optimal
pumping/recharge schedules are not.

Different Mixing Ratios of Reclaimed Water
and Pumped Groundwater (Alternative 2)

In Alternative 2, two different mixing ratios of
reclaimed water and pumped groundwater were tested:
(1) 0% mixing ratio, referred to as Alternative 2A,
that is, 3.79 × 103 m3/d of reclaimed water and no
pumped groundwater and (2) a 50% mixing ratio,
referred to as Alternative 2B, that is, 3.79 × 103 m3/d
of reclaimed water mixed with an equal volume of
pumped groundwater (Table 3). In this Alternative, we
are demonstrating the solution’s sensitivity to different
mixing ratios and are not implying any kind of regulatory
flexibility.

For Alternative 2A, the optimal solution indicates that
no new pumping wells are needed. No new pumping well
is needed because the recharge rate of the new recharge
pond is so low that the groundwater levels around the new

recharge pond will not rise above 45.72 m bls within the
planning horizon. The pumping schedules of the existing
wells and recharge schedules are very similar to the base
case.

The minimum total objective value is equal to
$1.81 × 106 (Table 4). The pumping cost for existing
wells ($6.68 × 105) and recharge cost ($1.14 × 106) are
very close to the base-case values (Table 4).

For Alternative 2B, the algorithm converged after 29
generations and the optimal solution indicates that one
new pumping well, P1, is required (Figure 10B). Only
one new pumping well is needed because 3.79 × 103 m3/d
of pumped groundwater satisfies the 50% mixing ratio
constraint. The pumping schedules of the existing wells
and recharge schedules are also similar to the base case.

The minimum total objective value is equal to
$3.47 × 106 (Table 4). The pumping cost for the new
well is equal to $5.50 × 105. The pumping cost for
existing wells ($6.68 × 105) and recharge cost ($1.15 ×
106) are also very close to the base-case values (Table 4).
According to this analysis, the mixing ratio only affects
the number of new pumping wells.
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Different Reductions in the Imported Water Supply
in Years 4 and 5 (Alternative 3)

In Alternative 3, two different reductions in the
imported water supply in years 4 and 5 were tested. We
assume that HDWD receives its full allocation of SWP
water for the first 3 years, and (1) 50% of its allocation in
years 4 and 5, referred to as Alternative 3A, and (2) 0%
of its allocation in years 4 and 5, referred to as Alternative
3B (Table 3).

For Alternative 3A, the optimization algorithm
required 56 generations to converge. The optimal locations
of new wells P1, P2, and P3 are shown in Figure 10C.
Compared to the base case, the optimal locations of the
new wells are almost the same except for well P3, which
is shifted one column to the east (Figure 10C). The opti-
mal pumping schedules for the new pumping wells in this
case are very similar to the base case.

The optimized pumping schedules for the existing
wells in this case are similar to the base case, except
for wells 11W and 12E. To meet the groundwater-
level constraint at well YVUZ-2, which is constrained
to increase 4.57 m/year, the pumping rate of well 11W
decreases to 0 after the third year, and the pumping rate
of well 12E increases to compensate for the deficit of
water-supply demand caused by decreased pumping at
well 11W. The Site 3 recharge schedule in this case is also
significantly different from the base case. The recharge
rate at Site 3 reaches its maximum recharge capacity from
month 11 to 12, 21 to 24, and 29 to 36. After month 36,
recharge is reduced to 50% and remains constant until
month 60 (Figure 11A).

The minimum total objective value is equal to
$7.55 × 106 which is greater than the base-case objective
value (Table 4). The objective value for this analysis is
much higher than the base-case value because the total
volume of artificial recharge at Site 3 is greater than the
total volume recharged at Site 3 in the base case (5.71 ×
106 vs. 4.72 × 106 m3). Another reason for the higher
objective value is that the pipeline cost for three new wells
in this case is slightly higher than the costs in the base case

(Table 4). The pumping cost for existing wells is about
equal to the cost of the base case (Table 4). The results
from this analysis indicate that the pumping/recharge
schedules in the west hydrogeologic unit are sensitive to
the changes in the supply of SWP water; however, the
new well locations and their schedules are insensitive to
changes in the supply of SWP water.

For Alternative 3B, the optimization algorithm
required 46 generations to converge. The optimal locations
of new wells P1, P2, and P3 are shown in Figure 10D,
which are the same as Alternative 3A, except for well
P3, which is shifted one row to the south. The opti-
mal pumping/recharge schedules are similar to Alternative
3A, except for wells 11W and 12E. Well 11W is inac-
tive during the entire planning horizon and the well 12E
pumps more groundwater to compensate for the deficit
of water-supply demand caused by the lack of pumping
at well 11W. The Site 3 recharge rate equals its max-
imum recharge capacity from month one to month 36.
After month 36, the recharge rate is equal to zero (the
maximum available imported water is reduced to 0 after
month 36; Figure 11B).

The minimum total objective value is equal to
$7.86 × 106 (Table 4). The objective value is greater
than the value in Alternative 3A because the west
hydrogeologic unit receives an even larger volume of
recharge water than the volume in Alternative 3A (6.76 ×
106 vs. 5.71 × 106 m3). The pipeline and pumping cost
for three new wells, and pumping cost for existing
wells are slightly higher than the cost in Alternative 3A
(Table 4). Again, the pumping/recharge schedules in the
west hydrogeologic unit are sensitive to the changes in
the supply of SWP water; however, the new well locations
and their pumping schedules are insensitive to changes in
the supply of SWP water.

Conclusions
In this paper, a hybrid-optimization algorithm, that

couples aGA with SLP, was developed to solve the MINLP
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Figure 11. Optimal recharge schedules at Sites 3, 6, and 7 for (A) Alternative 3A, and (B) Alternative 3B.
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problem and applied to a groundwater-management
problem in the Warren groundwater basin, Califor-
nia. The groundwater-management problem considered
conjunctive-use of surface water, reclaimed water, and
groundwater. The objective was to minimize water-
delivery costs subject to constraints including potential
new-well locations, state regulations, groundwater-level
constraints, water-supply demand, available imported
water, and pump/recharge capacities. As formulated, the
decision variables were the time-varying pumping and
recharge rates, and optimal locations of the new pump-
ing wells. The GA was used to solve the integer problem
and SLP was used to address the nonlinear programming
problem.

The hybrid-optimization algorithm was tested by
comparing with the enumeration-search and branch-
and-bound methods on a simplified version of the
groundwater-management problem for the Warren ground-
water basin. The optimized results showed that the
hybrid-optimization algorithm can find the global opti-
mum, and it could save around 82% of computation
time compared to the enumeration method. After the
hybrid-optimization algorithm was tested, it was applied
to evaluate the groundwater-management problem with
203 potential new well locations. As demonstrated here,
the algorithm can be used to effectively solve a real
conjunctive-use groundwater-management problem.

In the base case study, the optimized results indicated
that the installation cost for the three new wells account
for more than half of the total cost. If the installation cost
is subtracted from the total cost, the pumping cost for
the new wells, the pumping cost for the existing wells,
and the recharge cost for the recharge pond account for
46.9, 19.3, and 33.8% of the balance, respectively. The
pumping cost for existing wells is relatively inexpensive
because the average unit cost of pumping is less expen-
sive compared to the unit costs of imported water and
new pumping wells. The optimized pumping schedules
for the wells 5E, 12E, 16E, 17E, and 18E vary with
the water-supply demand. Wells 9E and 14E pumped
at their maximum capacity to decrease the groundwater
level for the entire management horizon. Wells in the
west hydrogeologic unit are inactive with the exception of
well 11W, which is used to meet water-supply demand.
Site 3 is the only recharge pond to operate and reaches its
maximum recharge capacity during some months because
the groundwater level at well YVUZ-2 is constrained to
increase 4.57 m/year.

A sensitivity analysis was performed on the
groundwater-management problem. The analysis showed
that the locations of the new pumping wells were sensitive
to the new recharge pond orientation, and a north-south
orientation may be preferable to an east-west orientation in
terms of the monetary cost. The mixing ratio of reclaimed
water and pumped groundwater only affected the num-
ber of new pumping wells. The pumping and recharge
schedules were sensitive to the quantity of imported water
available in years 4 and 5. Reducing the quantity of
imported water supply in years 4 and 5 resulted in much

higher objective values because of greater recharge in the
west hydrogeologic unit. This conjunctive management
model can provide the Warren subbasin water managers
with information that will improve their ability to man-
age their surface water, groundwater, and reclaimed water
resources.
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